
PySABER
Release 1.0.0

K. Aditya Mohan

May 24, 2023

CONTENTS:

1 Introduction 1

2 References 2

3 License 3

4 Installation 4

5 Tutorial 5
5.1 Input Sanity Check . 5
5.2 Estimate Blur Model . 7
5.3 Validate Blur Model . 9
5.4 Visualize Blur PSF . 12
5.5 Deblur Radiographs . 14

6 pysaber Package 17
6.1 Functions . 17

7 Feedback 28

8 Sponsor 29
8.1 Acknowledgements . 29
8.2 Disclaimer . 29

9 Indices and tables 30

Python Module Index 31

Index 32

i

CHAPTER

ONE

INTRODUCTION

PySABER is a python package for characterizing the X-ray source and detector blurs in cone-beam X-ray imaging
systems. SABER is an abbreviation for systems approach to blur estimation and reduction. Note that even parallel
beam X-rays in synchrotrons are in fact cone beams albeit with a large source to object distance (SOD). X-ray images,
also called radiographs, are simultaneously blurred by both the X-ray source spot blur and detector blur. This python
package uses a numerical optimization algorithm to disentangle and estimate both forms of blur simultaneously. The
point spread function (PSF) of X-ray source blur is modeled using a density function with two parameters. The first
parameter is the full width half maximum (FWHM) of the PSF along the x-axis (row-wise) and second is the FWHM
along the y-axis (column-axis). The PSF of detector blur is modeled as the sum of two density functions, each with
its own FWHM parameter, that are mixed together by a mixture (or weight) parameter. All these parameters are
then estimated using numerical optimization from normalized radiographs of a sharp edge such as a thick Tungsten
plate rollbar. To simultaneously estimate the PSFs of both source and detector blurs, radiographs must be acquired
at two different values for the ratio of the source to object distance (SOD) and object to detector distance (ODD).
If each radiograph has a single straight edge, then the measurements must be repeated for two different, preferably
perpendicular, orientations of the edge. If the radiograph consists of two intersecting perpendicular edges, then a
single radiograph at each specified SOD/ODD is sufficient.

Once the parameters of both source and detector blurs are estimated, this package is also useful to reduce blur in
radiographs using deblurring algorithms. Currently, Wiener filtering and regularized least squares deconvolution are
two deblurring algorithms that are supported for deblurring. Both these techniques use the estimated blur parameters to
deblur radiographs. For more detailed explanation on the experimental methodology and theory of PySABER, please
read the paper in References.

1

CHAPTER

TWO

REFERENCES

If you use pysaber Package, we request you to cite the following article -

• K. Aditya Mohan, Robert M. Panas, and Jefferson A. Cuadra. “SABER: A Systems Approach to Blur Estimation
and Reduction in X-ray Imaging.” arXiv preprint arXiv:1905.03935 (2019) [pdf]

2

https://orcid.org/0000-0002-0921-6559
https://arxiv.org/pdf/1905.03935.pdf

CHAPTER

THREE

LICENSE

LLNL-CODE-766837. This project is licensed under the MIT License.

MIT License

Copyright (c) 2018, Lawrence Livermore National Security, LLC

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3

CHAPTER

FOUR

INSTALLATION

pysaber is installed using the python package manager pip. To install pysaber, run the following command in a terminal:

pip install pysaber

Alternatively, to install using the source code in the github repository pysaber, first download the repository using the
download link in the top right corner of the webpage. Or, you can also git clone the repository directly from github.
In a terminal, change the current directory to the outermost folder of this downloaded repository, which contains the
README file, and run the following command:

pip install .

It is recommended to install the pysaber Package within a python virtual environment.

4

https://github.com/LLNL/pysaber
https://github.com/LLNL/pysaber

CHAPTER

FIVE

TUTORIAL

The steps involved in estimating blur PSFs and deblurring radiographs are outlined in the links below.

5.1 Input Sanity Check

• The first step to estimating the blur model involves computation of the transmission function, which is the ideal
radiograph image that is formed in the absence of X-ray source and detector blurs. This computation of trans-
mission function is performed internally in the function pysaber.estimate_blur(), which is used to estimate
the blur model by computing the parameters of X-ray source and detector blurs. However, this computation of
transmission function is not fail-proof and may result in inaccurate edge localization if certain assumptions made
when computing the transmission function are not satisfied.

• Before using pysaber.estimate_blur() to estimate blur model, it is recommended to check for accurate
edge localization in the transmission function. The transmission function can be computed using the function
pysaber.get_trans_masks().

• The function pysaber.get_trans_masks() also returns the mask arrays for the transmission function and ra-
diograph, which are used to include or exclude certain pixels from blur estimation. By default, the radiograph
mask only excludes a small number of pixels along the boundary of the radiograph from blur estimation. Addi-
tional pixels can be excluded from blur estimation by appropriately setting the input arguments of the functions
pysaber.get_trans_masks() and pysaber.estimate_blur(). The mask for transmission function should
also exclude the padded pixels in addition to those pixels excluded by the radiograph mask. Hence, pysaber.
get_trans_masks() is also useful to check if user expectations for the mask arrays are satisfied.

• Example python scripts that demonstrate the above procedure are shown below. To obtain the data that is required
to run this script, download and unzip the zip file at the link data. To run the script as is within the current
working directory, the files in the zip file must be placed within a folder called data.

Listing 1: Verify transmission function and masks for horizontal edge
radiograph.

import numpy as np
from PIL import Image #To read images in TIFF format
from pysaber import get_trans_masks #To compute transmission function and masks
import matplotlib.pyplot as plt #To display images

pix_wid = 0.675 #Width of each pixel in micrometers

#Read a horizontal edge radiograph for which the transmission function must be computed
rad = Image.open('data/horz_edge_25mm.tif') #Read radiograph
rad = np.asarray(rad) #Convert to numpy array

(continues on next page)

5

PySABER, Release 1.0.0

(continued from previous page)

bright = Image.open('data/horz_bright.tif') #Read bright field
bright = np.asarray(bright) #Convert to numpy array
dark = Image.open('data/horz_dark.tif') #Read dark field
dark = np.asarray(dark) #Convert to numpy array
nrad = (rad-dark)/(bright-dark) #Normalize radiograph

#Get the transmission function and masks
trans,trans_mask,rad_mask = get_trans_masks(nrad,edge='straight',pad=[3,3])
#Use pad = [1,1] if you do not want padding

#Display the array trans
#Visually check for inaccurate localization of the sharp-edge
plt.imshow(trans,cmap='gray')
plt.colorbar()
plt.show()

#Display and inspect the mask for transmission function
plt.imshow(trans_mask,cmap='gray')
plt.show()

#Display and inspect the mask for radiograph
plt.imshow(rad_mask,cmap='gray')
plt.show()

#Show a line plot comparing the measured radiograph and transmission function
sz = nrad.shape
coords = np.arange(-(sz[0]//2),sz[0]//2,1)*pix_wid
mid = (trans.shape[0]//2,trans.shape[1]//2)

plt.plot(coords,nrad[:,sz[1]//2])
#Due to padding, trans is three times the size of nrad in each dimension
#For proper alignment in the presence of padding, both nrad and trans are center aligned
#Center alignment is used since an equal amount of padding is applied at both ends of␣
→˓each axis
plt.plot(coords,trans[mid[0]-(sz[0]//2):mid[0]+(sz[0]//2),mid[1]])
plt.xlabel('micrometers')
plt.legend(['Measured','Transmission'])
plt.show()

Listing 2: Verify transmission function and masks for vertical edge ra-
diograph.

import numpy as np
from PIL import Image #To read images in TIFF format
from pysaber import get_trans_masks #To compute transmission function and masks
import matplotlib.pyplot as plt #To display images

pix_wid = 0.675 #Width of each pixel in micrometers

#Read a vertical edge radiograph for which the transmission function must be computed
rad = Image.open('data/vert_edge_25mm.tif') #Read radiograph
rad = np.asarray(rad) #Convert to numpy array

(continues on next page)

5.1. Input Sanity Check 6

PySABER, Release 1.0.0

(continued from previous page)

bright = Image.open('data/vert_bright.tif') #Read bright field
bright = np.asarray(bright) #Convert to numpy array
dark = Image.open('data/vert_dark.tif') #Read dark field
dark = np.asarray(dark) #Convert to numpy array
nrad = (rad-dark)/(bright-dark) #Normalize radiograph

#Get the transmission function and masks
trans,trans_mask,rad_mask = get_trans_masks(nrad,edge='straight',pad=[3,3])
#Use pad = [1,1] if you do not want padding

#Display the array trans
#Visually check for inaccurate localization of the sharp-edge
plt.imshow(trans,cmap='gray')
plt.colorbar()
plt.show()

#Display and inspect the mask for transmission function
plt.imshow(trans_mask,cmap='gray')
plt.show()

#Display and inspect the mask for radiograph
plt.imshow(rad_mask,cmap='gray')
plt.show()

#Show a line plot comparing the measured radiograph and transmission function
sz = nrad.shape
coords = np.arange(-(sz[1]//2),sz[1]//2,1)*pix_wid
mid = (trans.shape[0]//2,trans.shape[1]//2)

plt.plot(coords,nrad[sz[0]//2,:])
#Due to padding, trans is three times the size of nrad in each dimension
#For proper alignment in the presence of padding, both nrad and trans are center aligned
#Center alignment is used since an equal amount of padding is applied at both ends of␣
→˓each axis
plt.plot(coords,trans[mid[0],mid[1]-(sz[1]//2):mid[1]+(sz[1]//2)])
plt.xlabel('micrometers')
plt.legend(['Measured','Transmission'])
plt.show()

5.2 Estimate Blur Model

• To estimate the blur model, we must acquire radiographs of a sharp edge such as a Tungsten rollbar. Each sharp
edge radiograph can either contain a single straight edge or two mutually perpendicular intersecting edges. If
imaging a single straight edge, then radiographs must be acquired at two different perpendicular orientations of
the straight edge. Also, radiographs must be acquired at two different values of SOD/ODD, where SOD is the
source to object distance and ODD is the object to detector distance.

• Next, the radiographs must be appropriately normalized. For each radiograph, acquire a bright field image
(measurements with X-rays but no sample) and a dark field image (measurements without X-rays). Then, compute
the normalized radiograph by dividing the difference between the radiograph and the dark field image with the
difference between the bright field and the dark field image.

5.2. Estimate Blur Model 7

PySABER, Release 1.0.0

• Using the normalized radiographs, estimate parameters of X-ray source blur and detector blur using the function
pysaber.estimate_blur().

• An example python script that demonstrates blur estimation using radiographs of a single straight edge at various
orientations and SOD/ODD values is shown below. To obtain the data that is required to run this script, download
and unzip the zip file at the link data. To run the script as is within the current working directory, the files in
the zip file must be placed within a folder called data.

import numpy as np #For mathematics on vectors
from PIL import Image #To read images in TIFF format
from pysaber import estimate_blur #To estimate blur PSF parameters

pix_wid = 0.675 #Width of each pixel in micrometers

#Horizontal and vertical edge radiographs
edge_files = ['data/horz_edge_25mm.tif','data/horz_edge_50mm.tif',

'data/vert_edge_25mm.tif','data/vert_edge_50mm.tif']
#Filenames of bright field images for normalization
bright_files = ['data/horz_bright.tif','data/horz_bright.tif',

'data/vert_bright.tif','data/vert_bright.tif']
#Filenames of dark field images for normalization
dark_files = ['data/horz_dark.tif','data/horz_dark.tif',

'data/vert_dark.tif','data/vert_dark.tif']
#Source to object (SOD) distances in micrometers for each radiograph in edge_files
sod = [24751.89,50251.79,24753.05,50253.35]
#Source to detector (SDD) distances in micrometers for each radiograph in edge_files
sdd = [71003.08,71003.08,71010.86,71010.86]

rads = [] #List that will contain normalized radiographs
odd = [] #Object to detector distance (ODD) for each radiograph in rads
for i in range(len(edge_files)): #Loop through all the radiograph files

rad = Image.open(edge_files[i]) #Read radiograph
rad = np.asarray(rad) #Convert to numpy array
bright = Image.open(bright_files[i]) #Read bright field
bright = np.asarray(bright) #Convert to numpy array
dark = Image.open(dark_files[i]) #Read dark field
dark = np.asarray(dark) #Convert to numpy array
nrad = (rad-dark)/(bright-dark) #Normalize radiograph
rads.append(nrad) #Add normalized radiograph to the list rads
odd.append(sdd[i]-sod[i]) #Add corresponding ODD to the list odd

#Estimate X-ray source blur, detector blur, and every radiograph's transmission function
#To reduce run time and quickly produce a result, the value for argument thresh can be␣
→˓reduced.
#However, reducing thresh may produce an inaccurate blur model that does not fit the␣
→˓measured data
src_params,det_params,trans_params = estimate_blur(rads,sod,odd,pix_wid,

edge='straight',thresh=1e-6,pad=[3,3],power=1.0,save_dir='./')
#src_params is a python dictionary of parameters that quantify X-ray source blur
#det_params is a python dictionary of parameters that quantify blur from the detector␣
→˓panel
#Both src_params and det_params characterize the effective blur and are used during␣
→˓deblurring
#trans_params is a list of lists, each of which contains the low/high values of␣

(continues on next page)

5.2. Estimate Blur Model 8

PySABER, Release 1.0.0

(continued from previous page)

→˓transmission function
#trans_params is useful to check accuracy of fit and not useful for deblurring.

#help(estimate_blur)
#Uncomment above line to get help on using the function estimate_blur

print("---")
print("Source blur model parameters are {}".format(src_params))
#Print parameters of source blur
print("Detector blur model parameters are {}".format(det_params))
#Print parameters of detector blur
print("Transmission function parameters are {}".format(trans_params))
#Print parameters of transmission functions

5.3 Validate Blur Model

• We must ensure that the estimated parameters are indeed a good fit for the measured data. This is done by
comparing line profiles across the sharp edge between the measured radiograph and the predicted radiograph from
the blur model. The output of the blur model given parameters of source blur, detector blur, and transmission
function is computed using the function pysaber.get_trans_fit(). The fit must be evaluated for every
sharp-edge radiograph that is input to pysaber.estimate_blur().

• Verify the agreement between the measured radiograph and the blur model prediction. Carefully zoom into the
region containing the sharp edge and verify if the predicted blur matches with the blur in the measured radiograph.
Also, verify the agreement between the measured radiograph values and blur model prediction in regions further
away from the sharp edge. The predicted radiograph that is output by the blur model contains additional padding.
Hence, it is necessary to account for this padding when comparing with the measured radiograph.

• If the fit is not tight, consider reducing the value of the input argument thresh of the function pysaber.
estimate_blur() to obtain a better fit. Reducing the convergence threshold, thresh, can improve the agree-
ment between the measured radiograph and the blur model prediction, but will inevitably result in longer run
times. A good fit indicates that the blur model is able to accurately model the X-ray source and detector blurs.

• Example python scripts for line profile comparisons between the blur model prediction and measured radiograph
are shown below. To obtain the data that is required to run this script, download and unzip the zip file at the link
data. To run the script as is within the current working directory, the files in the zip file must be placed within
a folder called data.

Listing 3: Line profile comparisons across a horizontal edge radiograph.

import numpy as np
from PIL import Image #To read images in TIFF format
from pysaber import get_trans_fit #To get blurred radiograph as predicted by the blur␣
→˓model
import matplotlib.pyplot as plt #To display images

pix_wid = 0.675 #Width of each pixel in micrometers

#Read a horizontal edge radiograph for which accuracy of fit must be analyzed
rad = Image.open('data/horz_edge_25mm.tif') #Read radiograph
rad = np.asarray(rad) #Convert to numpy array
bright = Image.open('data/horz_bright.tif') #Read bright field

(continues on next page)

5.3. Validate Blur Model 9

PySABER, Release 1.0.0

(continued from previous page)

bright = np.asarray(bright) #Convert to numpy array
dark = Image.open('data/horz_dark.tif') #Read dark field
dark = np.asarray(dark) #Convert to numpy array
nrad = (rad-dark)/(bright-dark) #Normalize radiograph
sod = 24751.89 #Source to object distance (SOD) of radiograph
sdd = 71003.08 #Source to detector distance (SDD) of radiograph

#Parameters of X-ray source blur
src_params = {'source_FWHM_x_axis':2.69,

'source_FWHM_y_axis':3.01,
'norm_power':1.0,
'cutoff_FWHM_multiplier':10}

#Parameters of detector blur
det_params = {'detector_FWHM_1':1.85,

'detector_FWHM_2':126.5,
'detector_weight_1':0.916,
'norm_power':1.0,
'cutoff_FWHM_1_multiplier':10,
'cutoff_FWHM_2_multiplier':10}

#Transmission function parameters
trans_params = [0.015,0.98]

#Get the blurred radiograph as predicted by the blur model
pred_nrad,_ = get_trans_fit(nrad,sod,sdd-sod,pix_wid,src_params,det_params,trans_params,
→˓edge='straight',pad=[3,3])

#Show a line plot comparing the measured radiograph and the predicted blurred radiograph
sz = nrad.shape
coords = np.arange(-(sz[0]//2),sz[0]//2,1)*pix_wid
mid = (pred_nrad.shape[0]//2,pred_nrad.shape[1]//2)

plt.plot(coords,nrad[:,sz[1]//2])
#Due to padding, pred_nrad is three times the size of nrad in each dimension
#For proper alignment in the presence of padding, both nrad and pred_nrad are center␣
→˓aligned
#Center alignment is used since an equal amount of padding is applied at both ends of␣
→˓each axis
plt.plot(coords,pred_nrad[mid[0]-(sz[0]//2):mid[0]+(sz[0]//2),mid[1]])
plt.xlabel('micrometers')
plt.legend(['Measured','Prediction'])
plt.show()

Listing 4: Line profile comparisons across a vertical edge radiograph.

import numpy as np
from PIL import Image #To read images in TIFF format
from pysaber import get_trans_fit #To get blurred radiograph as predicted by the blur␣
→˓model
import matplotlib.pyplot as plt #To display images

pix_wid = 0.675 #Width of each pixel in micrometers

(continues on next page)

5.3. Validate Blur Model 10

PySABER, Release 1.0.0

(continued from previous page)

#Read a vertical edge radiograph for which accuracy of fit must be analyzed
rad = Image.open('data/vert_edge_25mm.tif') #Read radiograph
rad = np.asarray(rad) #Convert to numpy array
bright = Image.open('data/vert_bright.tif') #Read bright field
bright = np.asarray(bright) #Convert to numpy array
dark = Image.open('data/vert_dark.tif') #Read dark field
dark = np.asarray(dark) #Convert to numpy array
nrad = (rad-dark)/(bright-dark) #Normalize radiograph
sod = 24753.05 #Source to object distance (SOD) of radiograph
sdd = 71010.86 #Source to detector distance (SDD) of radiograph

#Parameters of X-ray source blur
src_params = {'source_FWHM_x_axis':2.69,

'source_FWHM_y_axis':3.01,
'norm_power':1.0,
'cutoff_FWHM_multiplier':10}

#Parameters of detector blur
det_params = {'detector_FWHM_1':1.85,

'detector_FWHM_2':126.5,
'detector_weight_1':0.916,
'norm_power':1.0,
'cutoff_FWHM_1_multiplier':10,
'cutoff_FWHM_2_multiplier':10}

#Transmission function parameters
trans_params = [0.015,0.98]

#Get the blurred radiograph as predicted by the blur model
pred_nrad,_ = get_trans_fit(nrad,sod,sdd-sod,pix_wid,src_params,det_params,trans_params,
→˓edge='straight',pad=[3,3])

#Show a line plot comparing the measured radiograph and the predicted blurred radiograph
sz = nrad.shape
coords = np.arange(-(sz[1]//2),sz[1]//2,1)*pix_wid
mid = (pred_nrad.shape[0]//2,pred_nrad.shape[1]//2)

plt.plot(coords,nrad[sz[0]//2,:])
#Due to padding, pred_nrad is three times the size of nrad in each dimension
#For proper alignment in the presence of padding, both nrad and pred_nrad are center␣
→˓aligned
#Center alignment is used since an equal amount of padding is applied at both ends of␣
→˓each axis
plt.plot(coords,pred_nrad[mid[0],mid[1]-(sz[1]//2):mid[1]+(sz[1]//2)])
plt.xlabel('micrometers')
plt.legend(['Measured','Prediction'])
plt.show()

5.3. Validate Blur Model 11

PySABER, Release 1.0.0

5.4 Visualize Blur PSF

• For further analysis and visualization, we can also compute the point spread functions (PSF) of source blur and
detector blur. The PSF of source blur is computed using the function pysaber.get_source_psf() and PSF
of detector blur is computed using pysaber.get_detector_psf().

• The function pysaber.get_source_psf() is useful to compute PSF either in the plane of the X-ray source
or the plane of the detector. Since source blur PSF on the detector plane is a function of the object’s source to
object distance (SOD) and object to detector distance (ODD), SOD and ODD must be specified when computing
source PSF in the plane of the detector. To compute source blur PSF in the source plane, it is sufficient to use
the default values for SOD and ODD in pysaber.get_source_psf().

• The detector blur PSF obtained using pysaber.get_detector_psf() models blur due to the scintillator and
detector panel. Hence, it is independent of SOD and ODD.

• Example python scripts that demonstrate visualization of source and detector PSFs are shown below.

Listing 5: Plot X-ray source blur PSF

import numpy as np #For mathematics on vectors
import matplotlib.pyplot as plt #For plotting and showing images
from pysaber import get_source_psf #To compute PSF of source blur

pix_wid = 0.675 #Width of each pixel in micrometers
#Parameters of X-ray source blur
src_params = {'source_FWHM_x_axis':2.69,

'source_FWHM_y_axis':3.01,
'norm_power':1.0,
'cutoff_FWHM_multiplier':10}

#Get point spread function (PSF) of source blur in the plane of the X-ray source.
#Do not supply SOD and SDD if you need PSF in the source plane.
source_psf = get_source_psf(pix_wid,src_params)

#Display the source blur PSF on the source plane as an image
sz = source_psf.shape
x = np.arange(-(sz[1]//2),(sz[1]//2)+1,1)*pix_wid
y = np.arange(-(sz[0]//2),(sz[0]//2)+1,1)*pix_wid
plt.pcolormesh(x,y,source_psf,cmap='gray')
plt.xlabel('micrometers')
plt.ylabel('micrometers')
plt.title('X-ray source PSF at source plane')
plt.colorbar()
plt.show()

#To get source blur PSF on the detector plane, supply SOD and ODD = SDD - SOD to the␣
→˓function get_source_psf
sod = 25000 #in micrometers
sdd = 71000 #in micrometers
source_psf = get_source_psf(pix_wid,src_params,sod,sdd-sod)

#help(get_source_psf)
#Uncomment the above line to get help on using the function get_source_psf

(continues on next page)

5.4. Visualize Blur PSF 12

PySABER, Release 1.0.0

(continued from previous page)

#Display the source blur PSF on the detector plane as an image
sz = source_psf.shape
x = np.arange(-(sz[1]//2),(sz[1]//2)+1,1)*pix_wid
y = np.arange(-(sz[0]//2),(sz[0]//2)+1,1)*pix_wid
plt.pcolormesh(x,y,source_psf,cmap='gray')
plt.xlabel('micrometers')
plt.ylabel('micrometers')
plt.title('X-ray source PSF at detector plane')
plt.colorbar()
plt.show()

Listing 6: Plot X-ray detector blur PSF

import numpy as np #For mathematics on vectors
import matplotlib.pyplot as plt #For displaying images
from matplotlib.colors import LogNorm #To display image values in logarithm scale
from pysaber import get_detector_psf #To compute PSF of detector blur

pix_wid = 0.675 #Width of each pixel in micrometers
#Parameters of detector blur
det_params = {'detector_FWHM_1':1.85,

'detector_FWHM_2':126.5,
'detector_weight_1':0.916,
'norm_power':1.0,
'cutoff_FWHM_1_multiplier':10,
'cutoff_FWHM_2_multiplier':10}

#Get point spread function (PSF) of detector blur as a 2D numpy array.
detector_psf = get_detector_psf(pix_wid,det_params)

#help(get_detector_psf)
#Uncomment the above line to get help in using the function get_detector_psf

#Display the PSF of detector blur
sz = detector_psf.shape
x = np.arange(-(sz[1]//2),(sz[1]//2)+1,1)*pix_wid
y = np.arange(-(sz[0]//2),(sz[0]//2)+1,1)*pix_wid
plt.pcolormesh(x,y,detector_psf,cmap='gray',norm=LogNorm())
plt.xlabel('micrometers')
plt.ylabel('micrometers')
plt.title('Detector PSF')
plt.colorbar()
plt.show()

5.4. Visualize Blur PSF 13

PySABER, Release 1.0.0

5.5 Deblur Radiographs

• Once the parameters of source and detector PSFs are estimated, radiographs of any arbitrary sample acquired
at any source to object distance (SOD) and source to detector distance (SDD) can be deblurred using various
techniques.

• To deblur a radiograph using Wiener filter, the function pysaber.wiener_deblur() is used. To deblur using
regularized least squares deconvolution (RLSD), use the function pysaber.least_squares_deblur().

• Deblurring increases sharpness and resolution. However, it also introduces ringing artifacts and increases noise.
To reduce noise and ringing artifacts, the regularization parameter can be increased. Ringing artifacts also in-
crease with increasing inaccuracy of the blur model. Thus, it is essential to obtain a good fit between the measured
radiograph and the blur model prediction as explained in the section Validate Blur Model.

• The python scripts shown below demonstrate deblurring of radiographs using Wiener filter and RLSD. To obtain
the data that is required to run this script, download and unzip the zip file at the link data. To run the script as
is within the current working directory, the files in the zip file must be placed within a folder called data.

Listing 7: Deblurring using Wiener filter

import numpy as np
from pysaber import wiener_deblur #To deblur using Wiener filtering
import matplotlib.pyplot as plt #To display images
from PIL import Image #To read images in TIFF format

rad_file = 'data/horz_edge_25mm.tif' #Filename of radiograph
bright_file = 'data/horz_bright.tif' #Bright field
dark_file = 'data/horz_dark.tif' #Dark field

sdd = 71003.08 #Source to detector distance (SDD) in micrometers
sod = 24751.89 #Source to object distance (SOD) in micrometers
pix_wid = 0.675 #Pixel width in micrometers
reg_param = 0.1 #Regularization parameter

rad = np.asarray(Image.open(rad_file)) #Read radiograph and convert to numpy array
bright = np.asarray(Image.open(bright_file)) #Read bright field image and convert to␣
→˓numpy array
dark = np.asarray(Image.open(dark_file)) #Read dark field image and convert to numpy␣
→˓array
norm_rad = (rad-dark)/(bright-dark) #Normalize radiograph

#X-ray source blur parameters
src_params = {'source_FWHM_x_axis':2.69,

'source_FWHM_y_axis':3.01,
'norm_power':1.0,
'cutoff_FWHM_multiplier':10}

#Detector blur parameters
det_params = {'detector_FWHM_1':1.85,

'detector_FWHM_2':126.5,
'detector_weight_1':0.916,
'norm_power':1.0,
'cutoff_FWHM_1_multiplier':10,
'cutoff_FWHM_2_multiplier':10}

(continues on next page)

5.5. Deblur Radiographs 14

PySABER, Release 1.0.0

(continued from previous page)

#Deblur the radiograph using Wiener filter
wiener_rad = wiener_deblur(norm_rad,sod,sdd-sod,pix_wid,src_params,det_params,reg_param)

#Display deblurred radiograph
sz = wiener_rad.shape
x = np.arange(-(sz[1]//2),(sz[1]//2)+1,1)*pix_wid
y = np.arange(-(sz[0]//2),(sz[0]//2)+1,1)*pix_wid
plt.pcolormesh(x,y,wiener_rad,cmap='gray')
plt.xlabel('micrometers')
plt.ylabel('micrometers')
plt.title('Wiener deblur')
plt.colorbar()
plt.show()

Listing 8: Deblurring using Regularized Least Squares Deconvolution

import numpy as np
from pysaber import least_squares_deblur #To deblur using regularized least squares␣
→˓deconvolution (RLSD)
import matplotlib.pyplot as plt #To display images
from PIL import Image #To read images in TIFF format

rad_file = 'data/horz_edge_25mm.tif' #Filename of radiograph
bright_file = 'data/horz_bright.tif' #Bright field image
dark_file = 'data/horz_dark.tif' #Dark field image

sdd = 71003.08 #Source to detector distance (SDD) in micrometers
sod = 24751.89 #Source to object distance (SOD) in micrometers
pix_wid = 0.675 #Pixel width in micrometers
reg_param = 0.001 #Regularization parameter

rad = np.asarray(Image.open(rad_file)) #Read radiograph and convert to numpy array
bright = np.asarray(Image.open(bright_file)) #Read bright field image and convert to␣
→˓numpy array
dark = np.asarray(Image.open(dark_file)) #Read dark field image and convert to numpy␣
→˓array
norm_rad = (rad-dark)/(bright-dark) #Normalize radiograph

#X-ray source blur parameters
src_params = {'source_FWHM_x_axis':2.69,

'source_FWHM_y_axis':3.01,
'norm_power':1.0,
'cutoff_FWHM_multiplier':10}

#Detector blur parameters
det_params = {'detector_FWHM_1':1.85,

'detector_FWHM_2':126.5,
'detector_weight_1':0.916,
'norm_power':1.0,
'cutoff_FWHM_1_multiplier':10,
'cutoff_FWHM_2_multiplier':10}

(continues on next page)

5.5. Deblur Radiographs 15

PySABER, Release 1.0.0

(continued from previous page)

#Deblur the radiograph using regularized least squares deconvolution (RLSD)
rlsd_rad = least_squares_deblur(norm_rad,sod,sdd-sod,pix_wid,src_params,det_params,reg_
→˓param,thresh=2e-4)

#Display deblurred radiograph of artifact
sz = rlsd_rad.shape
x = np.arange(-(sz[1]//2),(sz[1]//2)+1,1)*pix_wid
y = np.arange(-(sz[0]//2),(sz[0]//2)+1,1)*pix_wid
plt.pcolormesh(x,y,rlsd_rad,cmap='gray')
plt.xlabel('micrometers')
plt.ylabel('micrometers')
plt.title('RLSD deblur')
plt.colorbar()
plt.show()

5.5. Deblur Radiographs 16

CHAPTER

SIX

PYSABER PACKAGE

6.1 Functions

apply_blur_psfs(rad, sod, odd, pix_wid, ...) Function to blur the input radiograph with point spread
functions (PSF) of X-ray source and detector blurs.

estimate_blur(rads, sod, odd, pix_wid, edge) Estimate parameters of point spread functions (PSF) that
model X-ray source blur and/or detector blur from nor-
malized radiographs of a straight sharp edge or mutually
perpendicular intersecting pair of sharp edges.

get_detector_psf (pix_wid, det_pars) Function to compute point spread function (PSF) of de-
tector blur.

get_effective_psf (pix_wid, src_pars, det_pars) Function to compute the effective point spread function
(PSF), which is the convolution of X-ray source and de-
tector PSFs.

get_source_psf (pix_wid, src_pars[, sod, odd]) Function to compute the point spread function (PSF) of
X-ray source blur in the plane of the X-ray source or the
detector.

get_trans_fit(rad, sod, odd, pix_wid, ...[, pad]) Function to compute the blur model prediction and ideal
transmission function for a radiograph with a single
straight edge or two mutually perpendicular edges.

get_trans_masks(rad, edge[, tran_pars, pad, ...]) Function to compute transmission function and masks
for a radiograph with a single straight edge or two mutu-
ally perpendicular edges.

least_squares_deblur(rad, sod, odd, pix_wid, ...) Function to reduce blur (deblur) in radiographs using a
regularized least squares iterative algorithm.

wiener_deblur(rad, sod, odd, pix_wid, ...) Function to reduce blur (deblur) in a radiograph using
Wiener filtering.

6.1.1 apply_blur_psfs

pysaber.apply_blur_psfs(rad, sod, odd, pix_wid, src_pars, det_pars, padded_widths=[0, 0],
pad_type='constant', pad_constant=0)

Function to blur the input radiograph with point spread functions (PSF) of X-ray source and detector blurs.

This function blurs the input radiograph with X-ray source blur and detector blur with the specified point spread
function (PSF) parameters. This function is useful to observe the effect of source and detector blurs on a simulated
radiograph.

Parameters

17

PySABER, Release 1.0.0

• rad (numpy.ndarray) – Radiograph of type numpy.ndarray that is normalized using the
bright-field (also called flat-field) and dark-field images.

• sod (float) – Source to object distance (SOD) of radiograph.

• odd (float) – Object to detector distance (ODD) of radiograph.

• pix_wid (float) – Effective width of each detector pixel. Note that this is the effective
pixel size given by dividing the physical width of each detector pixel by the zoom factor of
the optical lens.

• src_pars (dict) – Dictionary containing the estimated parameters of X-ray source PSF.
It consists of several key-value pairs. The value for key source_FWHM_x_axis is the
full width half maximum (FWHM) of the source PSF along the x-axis (i.e., second
numpy.ndarray dimension). The value for key source_FWHM_y_axis is the FWHM of
source PSF along the y-axis (i.e., first numpy.ndarray dimension). All FWHMs are for
the source PSF in the plane of the X-ray source (and not the plane of the detector).
The value for key cutoff_FWHM_multiplier decides the non-zero spatial extent of the
source PSF. The PSF is clipped to zero beginning at a distance, as measured from the
PSF’s origin, equal to the maximum of src_pars['cutoff_FWHM_multiplier'] times
src_pars['source_FWHM_x_axis']/2 and src_pars['cutoff_FWHM_multiplier']
times src_pars['source_FWHM_y_axis']/2.

• det_pars (dict) – Dictionary containing the estimated parameters of detector PSF.
It consists of several key-value pairs. The value for key detector_FWHM_1 is the
FWHM of the first density function in the mixture density model for detector blur. The
first density function is the most dominant part of detector blur. The value for key
detector_FWHM_2 is the FWHM of the second density function in the mixture den-
sity model. This density function has the largest FWHM and models the long run-
ning tails of the detector blur’s PSF. The value for key detector_weight_1 is be-
tween 0 and 1 and is a measure of the amount of contribution of the first density
function to the detector blur. The values for keys cutoff_FWHM_1_multiplier and
cutoff_FWHM_2_multiplier decide the non-zero spatial extent of the detector PSF.
The PSF is clipped to zero beginning at a distance, as measured from the PSF’s
origin, equal to the maximum of det_pars['cutoff_FWHM_1_multiplier'] times
det_pars['detector_FWHM_1']/2 and det_pars['cutoff_FWHM_2_multiplier']
times det_pars['detector_FWHM_2']/2.

• padded_widths (list) – List of two integers that specifies the amount of padding already
applied to input radiograph. The first integer specifies the padding applied along the first
dimension of radiograph. The second integer specifies the padding applied along the second
dimension of radiograph. Assumes padded_widths[k]/2 amount of padding is applied at
both the left and right extremities of dimension k, where k is 0 or 1.

• pad_type (str) – Type of additional padding that must be used if amount of padding spec-
ified in padded_widths is insufficient. Supported values are edge and constant.

• pad_constant (float) – If pad_type is constant, specify the constant value that must be
padded.

Returns
Radiograph that is blurred using X-ray source and detector blurs.

Return type
numpy.ndarray

6.1. Functions 18

PySABER, Release 1.0.0

6.1.2 estimate_blur

pysaber.estimate_blur(rads, sod, odd, pix_wid, edge, thresh=1e-06, pad=[3, 3], masks=None,
bdary_mask=5.0, perp_mask=5.0, power=1.0, save_dir='./', only_src=False,
only_det=False, mix_det=True)

Estimate parameters of point spread functions (PSF) that model X-ray source blur and/or detector blur from
normalized radiographs of a straight sharp edge or mutually perpendicular intersecting pair of sharp edges.

This function is used to estimate parameters of the PSFs that model X-ray source blur and/or detector blur. It takes
as input the normalized radiographs at multiple source to object distances (SOD) and object to detector distances
(ODD). If each radiograph has a single straight edge, then the measurement must be repeated for two different,
preferably perpendicular, orientations of the edge. If the radiograph consists of two intersecting perpendicular
edges, then a single radiograph at each specified SOD/ODD is sufficient. Simultaneous estimation of source
and detector blur will require radiographs at a minimum of two different value pairs for SOD/ODD. During PSF
parameter estimation, the influence of certain regions within each radiograph can be removed by masking. For
more details, please read ahead and also refer to the documents listed in References.

Parameters

• rads (list) – List of radiographs, each of type numpy.ndarray, at various SODs and ODDs.
Each radiograph must be normalized using the bright-field (also called flat-field) and dark-
field images.

• sod (list) – List of source to object distances (SOD), each of type float, at which each
corresponding radiograph in the list rads was acquired.

• odd (list) – List of object to detector distances (ODD), each of type float, at which each
corresponding radiograph in the list rads was acquired.

• pix_wid (float) – Effective width of each detector pixel. Note that this is the effective
pixel size given by dividing the physical width of each detector pixel by the zoom factor of
the optical lens.

• edge (str) – Used to indicate whether there is a single straight edge or two mutually per-
pendicular edges in each radiograph. If edge is perpendicular, then each radiograph is
assumed to have two mutually perpendicular edges. If it is straight, then each radiograph
is assumed to have a single straight edge. Only perpendicular and straight are legal
choices for edge.

• thresh (float) – Convergence threshold for the minimizer during parameter estimation.
The iterations stop when the ratio of the reduction in the error function (cost value) and the
magnitude of the error function is lower than thresh. This is the parameter ftol that is
specified in the options parameter of scipy.optimize.minimize. The optimizer used
is L-BFGS-B. During joint estimation of source and detector blur, the convergence threshold
for the minimizer during the first two initialization steps is ten times this value.

• pad (list) – List of two integers that determine the amount of padding that must be applied
to the radiographs to reduce aliasing during convolution. The number of rows/columns after
padding is equal to pad_factor[0]/pad_factor[1] times the number of rows/columns in
each radiograph before padding. For example, if the first element in pad_factor is 2, then
the radiograph is padded to twice its size along the first dimension.

• masks (list) – List of boolean masks, each of type numpy.ndarray and same shape as the
radiograph, that is used to exclude pixels from blur estimation. This is in addition to the
masking specified by bdary_mask and perp_mask. An example use case is if some pixels
in the radiograph rads[i] are bad, then those pixels can be excluded from blur estimation
by setting the corresponding entries in masks[i] to False and True otherwise. If None,
no user specified mask is used.

6.1. Functions 19

PySABER, Release 1.0.0

• bdary_mask (float) – Percentage of image region in the radiographs as measured from the
outer edge going inwards that must be excluded from blur estimation. Pixels are excluded
(or masked) beginning from the outermost periphery of the image and working inwards until
the specified percentage of pixels is reached.

• perp_mask (float) – Percentage of circular region to ignore during blur estimation around
the intersecting corner of two perpendicular edges. Ignored if edge is straight.

• power (float) – Shape parameter of the density function used to model each PSF. For exam-
ple, choosing a value of one for power creates an exponential (Laplacian) density function.
Choosing a value of two for power creates a Gaussian density function.

• save_dir (str) – Directory where estimated parameters are saved in yaml file for-
mat. Source blur parameters are saved in the file source_params.yml within the folder
save_dir. Similary, detector blur and transmission function parameters are saved as
detector_params.yml and transmission_params.yml.

• only_src (bool) – If True, only estimate source blur parameters.

• only_det (bool) – If True, only estimate detector blur parameters.

• mix_det (bool) – If True, do not use mixture model for detector blur.

Returns

Tuple of objects containing the estimated parameters. If estimating both source and detector blur
parameters, returns the three element tuple (src_pars, det_pars, tran_pars). If estimating
only source blur parameters, returns the two element tuple (src_pars, tran_pars). If esti-
mating only detector blur parameters, returns the two element tuple (det_pars, tran_pars).
src_pars and det_pars are python dictionaries. tran_pars is a list of lists.

src_pars contains the estimated parameters of X-ray source PSF. It consists of several key-value
pairs. The value for key source_FWHM_x_axis is the full width half maximum (FWHM) of
the source PSF along the x-axis (i.e., second numpy.ndarray dimension). The value for key
source_FWHM_y_axis is the FWHM of source PSF along the y-axis (i.e., first numpy.ndarray
dimension). All FWHMs are for the source PSF in the plane of the X-ray source (and not the
plane of the detector). The value for key cutoff_FWHM_multiplier decides the non-zero spa-
tial extent of the source PSF. The PSF is clipped to zero beginning at a distance, as measured from
the PSF’s origin, equal to the maximum of src_pars['cutoff_FWHM_multiplier'] times
src_pars['source_FWHM_x_axis']/2 and src_pars['cutoff_FWHM_multiplier']
times src_pars['source_FWHM_y_axis']/2.

det_pars contains estimated parameters of detector PSF. It consists of several key-value
pairs. The value for key detector_FWHM_1 is the FWHM of the first density function in
the mixture density model for detector blur. The first density function is the most domi-
nant part of detector blur. The value for key detector_FWHM_2 is the FWHM of the sec-
ond density function in the mixture density model. This density function has the largest
FWHM and models the long running tails of the detector blur’s PSF. The value for key
detector_weight_1 is between 0 and 1 and is a measure of the amount of contribution of the
first density function to the detector blur. The values for keys cutoff_FWHM_1_multiplier and
cutoff_FWHM_2_multiplier decide the non-zero spatial extent of the detector PSF. The PSF is
clipped to zero beginning at a distance, as measured from the PSF’s origin, equal to the maximum
of det_pars['cutoff_FWHM_1_multiplier'] times det_pars['detector_FWHM_1']/2
and det_pars['cutoff_FWHM_2_multiplier'] times det_pars['detector_FWHM_2']/
2. If mix_det is False, then value for key detector_weight_1 is fixed at 1 and value for key
detector_FWHM_2 is fixed at 0.

tran_pars contains estimated parameters of the transmission function for each input radiograph.
This return value is a list of lists, where each inner nested list consists of two parameters of type

6.1. Functions 20

PySABER, Release 1.0.0

float. These float values give the low and high values respectively of the transmission function.
The number of nested lists in the returned list equals the number of input radiographs. Note that
the transmission function is the normalized radiograph image that would have resulted in the
absence of blur and noise.

Return type
tuple

6.1.3 get_detector_psf

pysaber.get_detector_psf(pix_wid, det_pars)
Function to compute point spread function (PSF) of detector blur.

Parameters

• pix_wid (float) – Effective width of each detector pixel. Note that this is the effective
pixel size given by dividing the physical width of each detector pixel by the zoom factor of
the optical lens.

• det_pars (dict) – Dictionary containing the estimated parameters of detector PSF.
It consists of several key-value pairs. The value for key detector_FWHM_1 is the
FWHM of the first density function in the mixture density model for detector blur. The
first density function is the most dominant part of detector blur. The value for key
detector_FWHM_2 is the FWHM of the second density function in the mixture den-
sity model. This density function has the largest FWHM and models the long run-
ning tails of the detector blur’s PSF. The value for key detector_weight_1 is be-
tween 0 and 1 and is a measure of the amount of contribution of the first density
function to the detector blur. The values for keys cutoff_FWHM_1_multiplier and
cutoff_FWHM_2_multiplier decide the non-zero spatial extent of the detector PSF.
The PSF is clipped to zero beginning at a distance, as measured from the PSF’s
origin, equal to the maximum of det_pars['cutoff_FWHM_1_multiplier'] times
det_pars['detector_FWHM_1']/2 and det_pars['cutoff_FWHM_2_multiplier']
times det_pars['detector_FWHM_2']/2.

Returns
PSF of detector

Return type
numpy.ndarray

6.1.4 get_effective_psf

pysaber.get_effective_psf(pix_wid, src_pars, det_pars, sod=1, odd=1)
Function to compute the effective point spread function (PSF), which is the convolution of X-ray source and
detector PSFs.

Parameters

• pix_wid (float) – Effective width of each detector pixel. Note that this is the effective
pixel size given by dividing the physical width of each detector pixel by the zoom factor of
the optical lens.

• src_pars (dict) – Dictionary containing the estimated parameters of X-ray source PSF.
It consists of several key-value pairs. The value for key source_FWHM_x_axis is the
full width half maximum (FWHM) of the source PSF along the x-axis (i.e., second
numpy.ndarray dimension). The value for key source_FWHM_y_axis is the FWHM of

6.1. Functions 21

PySABER, Release 1.0.0

source PSF along the y-axis (i.e., first numpy.ndarray dimension). All FWHMs are for
the source PSF in the plane of the X-ray source (and not the plane of the detector).
The value for key cutoff_FWHM_multiplier decides the non-zero spatial extent of the
source PSF. The PSF is clipped to zero beginning at a distance, as measured from the
PSF’s origin, equal to the maximum of src_pars['cutoff_FWHM_multiplier'] times
src_pars['source_FWHM_x_axis']/2 and src_pars['cutoff_FWHM_multiplier']
times src_pars['source_FWHM_y_axis']/2.

• det_pars (dict) – Dictionary containing the estimated parameters of detector PSF.
It consists of several key-value pairs. The value for key detector_FWHM_1 is the
FWHM of the first density function in the mixture density model for detector blur. The
first density function is the most dominant part of detector blur. The value for key
detector_FWHM_2 is the FWHM of the second density function in the mixture den-
sity model. This density function has the largest FWHM and models the long run-
ning tails of the detector blur’s PSF. The value for key detector_weight_1 is be-
tween 0 and 1 and is a measure of the amount of contribution of the first density
function to the detector blur. The values for keys cutoff_FWHM_1_multiplier and
cutoff_FWHM_2_multiplier decide the non-zero spatial extent of the detector PSF.
The PSF is clipped to zero beginning at a distance, as measured from the PSF’s
origin, equal to the maximum of det_pars['cutoff_FWHM_1_multiplier'] times
det_pars['detector_FWHM_1']/2 and det_pars['cutoff_FWHM_2_multiplier']
times det_pars['detector_FWHM_2']/2.

• sod (float) – Source to object distance (SOD).

• odd (float) – Object to detector distance (ODD).

Returns
PSF of effective blur in the plane of detector.

Return type
numpy.ndarray

6.1.5 get_source_psf

pysaber.get_source_psf(pix_wid, src_pars, sod=1.0, odd=1.0)
Function to compute the point spread function (PSF) of X-ray source blur in the plane of the X-ray source or the
detector.

If source to object distance (SOD) is equal to object to detector distance (ODD), then the PSF on the detector
plane is same as that on the plane of the X-ray source. If PSF on detector plane is desired, it is required to specify
the SOD and ODD. If PSF on source plane is desired, use the default values for SOD and ODD.

Parameters

• pix_wid (float) – Effective width of each detector pixel. Note that this is the effective
pixel size given by dividing the physical width of each detector pixel by the zoom factor of
the optical lens.

• src_pars (dict) – Dictionary containing the estimated parameters of X-ray source PSF.
It consists of several key-value pairs. The value for key source_FWHM_x_axis is the
full width half maximum (FWHM) of the source PSF along the x-axis (i.e., second
numpy.ndarray dimension). The value for key source_FWHM_y_axis is the FWHM of
source PSF along the y-axis (i.e., first numpy.ndarray dimension). All FWHMs are for
the source PSF in the plane of the X-ray source (and not the plane of the detector).
The value for key cutoff_FWHM_multiplier decides the non-zero spatial extent of the
source PSF. The PSF is clipped to zero beginning at a distance, as measured from the

6.1. Functions 22

PySABER, Release 1.0.0

PSF’s origin, equal to the maximum of src_pars['cutoff_FWHM_multiplier'] times
src_pars['source_FWHM_x_axis']/2 and src_pars['cutoff_FWHM_multiplier']
times src_pars['source_FWHM_y_axis']/2.

• sod (float) – Source to object distance (SOD).

• odd (float) – Object to detector distance (ODD).

Returns
PSF of X-ray source blur.

Return type
numpy.ndarray

6.1.6 get_trans_fit

pysaber.get_trans_fit(rad, sod, odd, pix_wid, src_pars, det_pars, tran_pars, edge, pad=[3, 3])
Function to compute the blur model prediction and ideal transmission function for a radiograph with a single
straight edge or two mutually perpendicular edges.

For a measured radiograph consisting of a straight sharp edge or two mutually perpendicular edges, get the ideal
transmission function and the predicted radiograph from the blur model. Here, the blur model is used to model
the impact of blur due to X-ray source and detector.

Parameters

• rad (numpy.ndarray) – Normalized radiograph of a straight sharp edge or two mutually
perpendicular edges.

• sod (float) – Source to object distance (SOD) for the radiograph rad.

• odd (float) – Object to detector distance (SDD) for the radiograph rad.

• pix_wid (float) – Effective width of each detector pixel. Note that this is the effective
pixel size given by dividing the physical width of each detector pixel by the zoom factor of
the optical lens.

• src_pars (dict) – Dictionary containing the estimated parameters of X-ray source PSF.
It consists of several key-value pairs. The value for key source_FWHM_x_axis is the
full width half maximum (FWHM) of the source PSF along the x-axis (i.e., second
numpy.ndarray dimension). The value for key source_FWHM_y_axis is the FWHM of
source PSF along the y-axis (i.e., first numpy.ndarray dimension). All FWHMs are for
the source PSF in the plane of the X-ray source (and not the plane of the detector).
The value for key cutoff_FWHM_multiplier decides the non-zero spatial extent of the
source PSF. The PSF is clipped to zero beginning at a distance, as measured from the
PSF’s origin, equal to the maximum of src_pars['cutoff_FWHM_multiplier'] times
src_pars['source_FWHM_x_axis']/2 and src_pars['cutoff_FWHM_multiplier']
times src_pars['source_FWHM_y_axis']/2.

• det_pars (dict) – Dictionary containing the estimated parameters of detector PSF.
It consists of several key-value pairs. The value for key detector_FWHM_1 is the
FWHM of the first density function in the mixture density model for detector blur. The
first density function is the most dominant part of detector blur. The value for key
detector_FWHM_2 is the FWHM of the second density function in the mixture den-
sity model. This density function has the largest FWHM and models the long run-
ning tails of the detector blur’s PSF. The value for key detector_weight_1 is be-
tween 0 and 1 and is a measure of the amount of contribution of the first density
function to the detector blur. The values for keys cutoff_FWHM_1_multiplier and
cutoff_FWHM_2_multiplier decide the non-zero spatial extent of the detector PSF.

6.1. Functions 23

PySABER, Release 1.0.0

The PSF is clipped to zero beginning at a distance, as measured from the PSF’s
origin, equal to the maximum of det_pars['cutoff_FWHM_1_multiplier'] times
det_pars['detector_FWHM_1']/2 and det_pars['cutoff_FWHM_2_multiplier']
times det_pars['detector_FWHM_2']/2.

• tran_pars (list) – List containing the estimated parameters of the transmission function
for the input radiograph. It consists of two parameters of type float. These float values give
the low and high values respectively of the transmission function. Note that the transmission
function is the normalized radiograph image that would have resulted in the absence of blur
and noise. If not specified (or specified as None), then the best fitting transmission function
parameters are estimated using RANSAC regression.

• edge (str) – Used to indicate whether there is a single straight edge or two mutually per-
pendicular edges in each radiograph. If edge is perpendicular, then each radiograph is
assumed to have two mutually perpendicular intersecting edges. If it is straight, then each
radiograph is assumed to have a single straight edge. Only perpendicular and straight
are legal choices for edge.

• pad (list) – List of two integers that determine the amount of padding that must be applied
to the radiographs to reduce aliasing during convolution. The number of rows/columns after
padding is equal to pad_factor[0]/pad_factor[1] times the number of rows/columns in
each radiograph before padding. For example, if the first element in pad_factor is 2, then
the radiograph is padded to twice its size along the first dimension.

Returns
Tuple of two arrays of type numpy.ndarray. The first array is blurred radiograph as predicted
by the blur model. The second array is transmission function, which is the ideal readiograph in
the absence of source and detector blur.

Return type
tuple

6.1.7 get_trans_masks

pysaber.get_trans_masks(rad, edge, tran_pars=None, pad=[1, 1], mask=None, bdary_mask=5.0,
perp_mask=5.0)

Function to compute transmission function and masks for a radiograph with a single straight edge or two mutually
perpendicular edges.

For a measured radiograph consisting of a straight sharp edge or two mutually perpendicular edges, get the
transmission function, mask for transmission function, and mask for radiograph.

Parameters

• rad (numpy.ndarray) – Normalized radiograph of a straight sharp edge or two mutually
perpendicular edges.

• edge (str) – Used to indicate whether there is a single straight edge or two mutually per-
pendicular edges in each radiograph. If edge is perpendicular, then each radiograph is
assumed to have two mutually perpendicular edges. If it is straight, then each radiograph
is assumed to have a single straight edge. Only perpendicular and straight are legal
choices for edge.

• tran_pars (list) – List containing the estimated parameters of the transmission function
for the input radiograph. It consists of two parameters of type float. These float values give
the low and high values respectively of the transmission function. Note that the transmission
function is the normalized radiograph image that would have resulted in the absence of blur
and noise. If not specified (or specified as None), then the best fitting transmission function

6.1. Functions 24

PySABER, Release 1.0.0

parameters are estimated using RANSAC regression. If specified as [0,1], this function
returns the ideal transmission function.

• pad (list) – List of two integers that determine the amount of padding that must be applied
to the radiographs to reduce aliasing during convolution. The number of rows/columns after
padding is equal to pad_factor[0]/pad_factor[1] times the number of rows/columns in
each radiograph before padding. For example, if the first element in pad_factor is 2, then
the radiograph is padded to twice its size along the first dimension.

• mask (numpy.ndarray) – Boolean mask of the same shape as the radiograph that is used
to exclude pixels from blur estimation. This is in addition to the masking specified by
bdary_mask and perp_mask. An example use case is if some pixels in the radiograph rad
are bad, then those pixels can be excluded from blur estimation by setting the corresponding
entries in mask to False and True otherwise. If None, no user specified mask is used.

• bdary_mask (float) – Percentage of image region in the radiographs as measured from the
outer edge going inwards that must be excluded from blur estimation. Pixels are excluded
(or masked) beginning from the outermost periphery of the image and working inwards until
the specified percentage of pixels is reached.

• perp_mask (float) – Percentage of circular region to ignore during blur estimation around
the intersecting corner of two perpendicular edges. Ignored if edge is straight.

Returns
Tuple of three arrays each of type numpy.ndarray. The first array is the transmission function,
which is the ideal readiograph in the absence of source and detector blur. The second and third
arrays are the masks for the transmission function and radiograph respectively. The mask array
indicates what pixels must be included (pixel value of True) or excluded (pixel value of False)
during blur estimation.

Return type
tuple

6.1.8 least_squares_deblur

pysaber.least_squares_deblur(rad, sod, odd, pix_wid, src_pars, det_pars, reg_par, init_rad=None,
weights=None, thresh=0.0001)

Function to reduce blur (deblur) in radiographs using a regularized least squares iterative algorithm.

Parameters

• rad (numpy.ndarray) – Normalized radiograph to deblur

• sod (float) – Source to object distance (SOD) of the radiograph

• odd (float) – Object to detector distance (ODD) of the radiograph

• pix_wid (float) – Effective width of each detector pixel. Note that this is the effective
pixel size given by dividing the physical width of each detector pixel by the zoom factor of
the optical lens.

• src_pars (dict) – Dictionary containing the estimated parameters of X-ray source PSF.
It consists of several key-value pairs. The value for key source_FWHM_x_axis is the
full width half maximum (FWHM) of the source PSF along the x-axis (i.e., second
numpy.ndarray dimension). The value for key source_FWHM_y_axis is the FWHM of
source PSF along the y-axis (i.e., first numpy.ndarray dimension). All FWHMs are for
the source PSF in the plane of the X-ray source (and not the plane of the detector).
The value for key cutoff_FWHM_multiplier decides the non-zero spatial extent of the
source PSF. The PSF is clipped to zero beginning at a distance, as measured from the

6.1. Functions 25

PySABER, Release 1.0.0

PSF’s origin, equal to the maximum of src_pars['cutoff_FWHM_multiplier'] times
src_pars['source_FWHM_x_axis']/2 and src_pars['cutoff_FWHM_multiplier']
times src_pars['source_FWHM_y_axis']/2.

• det_pars (dict) – Dictionary containing the estimated parameters of detector PSF.
It consists of several key-value pairs. The value for key detector_FWHM_1 is the
FWHM of the first density function in the mixture density model for detector blur. The
first density function is the most dominant part of detector blur. The value for key
detector_FWHM_2 is the FWHM of the second density function in the mixture den-
sity model. This density function has the largest FWHM and models the long run-
ning tails of the detector blur’s PSF. The value for key detector_weight_1 is be-
tween 0 and 1 and is a measure of the amount of contribution of the first density
function to the detector blur. The values for keys cutoff_FWHM_1_multiplier and
cutoff_FWHM_2_multiplier decide the non-zero spatial extent of the detector PSF.
The PSF is clipped to zero beginning at a distance, as measured from the PSF’s
origin, equal to the maximum of det_pars['cutoff_FWHM_1_multiplier'] times
det_pars['detector_FWHM_1']/2 and det_pars['cutoff_FWHM_2_multiplier']
times det_pars['detector_FWHM_2']/2.

• reg_par (float) – Regularization parameter for the least squares deblurring algorithm.
Noise and ringing artifacts in the deblurred radiograph decreases with increasing values for
reg_par and vice versa. But, note that increasing reg_par can also result in excessive
blurring due to over-regulization. It is recommended to empirically choose this parameter
by increasing or decreasing it by a factor, greater than one (such as 2 or 10), until the desired
image quality is achieved.

• init_rad (numpy.ndarray) – Initial estimate for the deblurred radiograph. If set to None,
then the blurred radiograph is used as an initial estimate. If not None, then init_rad must
be a numpy.ndarray of the same shape as the radiograph rad.

• weights (numpy.ndarray) – Array of weights of the same shape as rad that is useful to
model measurement noise. It can be used to increase or decrease the influence of a particular
pixel of rad in the forward model cost function. If set to None, every pixel is assigned the
same weight of 1 in the cost function.

• thresh (float) – Convergence threshold for the minimizer used to deblur the input radio-
graph. The iterations stop when the ratio of the reduction in the error function (cost value)
and the magnitude of the error function is lower than thresh. This is the parameter ftol
that is specified in the options parameter of scipy.optimize.minimize. The optimizer
used is L-BFGS-B.

Returns
Deblurred radiograph using regularized least squares algorithm.

Return type
numpy.ndarray

6.1. Functions 26

PySABER, Release 1.0.0

6.1.9 wiener_deblur

pysaber.wiener_deblur(rad, sod, odd, pix_wid, src_pars, det_pars, reg_par)
Function to reduce blur (deblur) in a radiograph using Wiener filtering.

Parameters

• rad (numpy.ndarray) – Normalized radiograph to deblur

• sod (float) – Source to object distance (SOD) for the radiograph rad.

• odd (float) – Object to detector distance (SDD) for the radiograph rad.

• pix_wid (float) – Effective width of each detector pixel. Note that this is the effective
pixel size given by dividing the physical width of each detector pixel by the zoom factor of
the optical lens.

• src_pars (dict) – Dictionary containing the estimated parameters of X-ray source PSF.
It consists of several key-value pairs. The value for key source_FWHM_x_axis is the
full width half maximum (FWHM) of the source PSF along the x-axis (i.e., second
numpy.ndarray dimension). The value for key source_FWHM_y_axis is the FWHM of
source PSF along the y-axis (i.e., first numpy.ndarray dimension). All FWHMs are for
the source PSF in the plane of the X-ray source (and not the plane of the detector).
The value for key cutoff_FWHM_multiplier decides the non-zero spatial extent of the
source PSF. The PSF is clipped to zero beginning at a distance, as measured from the
PSF’s origin, equal to the maximum of src_pars['cutoff_FWHM_multiplier'] times
src_pars['source_FWHM_x_axis']/2 and src_pars['cutoff_FWHM_multiplier']
times src_pars['source_FWHM_y_axis']/2.

• det_pars (dict) – Dictionary containing the estimated parameters of detector PSF.
It consists of several key-value pairs. The value for key detector_FWHM_1 is the
FWHM of the first density function in the mixture density model for detector blur. The
first density function is the most dominant part of detector blur. The value for key
detector_FWHM_2 is the FWHM of the second density function in the mixture den-
sity model. This density function has the largest FWHM and models the long run-
ning tails of the detector blur’s PSF. The value for key detector_weight_1 is be-
tween 0 and 1 and is a measure of the amount of contribution of the first density
function to the detector blur. The values for keys cutoff_FWHM_1_multiplier and
cutoff_FWHM_2_multiplier decide the non-zero spatial extent of the detector PSF.
The PSF is clipped to zero beginning at a distance, as measured from the PSF’s
origin, equal to the maximum of det_pars['cutoff_FWHM_1_multiplier'] times
det_pars['detector_FWHM_1']/2 and det_pars['cutoff_FWHM_2_multiplier']
times det_pars['detector_FWHM_2']/2.

• reg_par (float) – Regularization parameter for Wiener filter. Noise and ringing artifacts in
the deblurred radiograph decreases with increasing values for reg_par and vice versa. But,
note that increasing reg_par can also result in excessive blurring due to over-regulization.
It is recommended to empirically choose this parameter by increasing or decreasing it by a
factor, greater than one (such as 2 or 10), until the desired image quality is achieved.

Returns
Deblurred radiograph using a Wiener filter.

Return type
numpy.ndarray

6.1. Functions 27

CHAPTER

SEVEN

FEEDBACK

This software is under development and may have bugs. If you run into any problems, please raise a issue on github at the
link issues. There is a lot of scope to improve the performance and functionality of this python package. Furthermore,
since this package solves a non-convex optimization problem, there is a remote possibility that the final solution may
be a local optima that does not properly fit the data. If there is sufficient interest, we will invest time to significantly
reduce the run time, improve convergence and usability, and add additional features and functionalities.

28

https://github.com/LLNL/pysaber/issues

CHAPTER

EIGHT

SPONSOR

8.1 Acknowledgements

LLNL-CODE-766837. LLNL-SM-809826. This work performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

8.2 Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

29

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

30

PYTHON MODULE INDEX

p
pysaber, 17

31

INDEX

A
apply_blur_psfs() (in module pysaber), 17

E
estimate_blur() (in module pysaber), 19

G
get_detector_psf() (in module pysaber), 21
get_effective_psf() (in module pysaber), 21
get_source_psf() (in module pysaber), 22
get_trans_fit() (in module pysaber), 23
get_trans_masks() (in module pysaber), 24

L
least_squares_deblur() (in module pysaber), 25

M
module

pysaber, 17

P
pysaber

module, 17

W
wiener_deblur() (in module pysaber), 27

32

	Introduction
	References
	License
	Installation
	Tutorial
	Input Sanity Check
	Estimate Blur Model
	Validate Blur Model
	Visualize Blur PSF
	Deblur Radiographs

	pysaber Package
	Functions
	apply_blur_psfs
	estimate_blur
	get_detector_psf
	get_effective_psf
	get_source_psf
	get_trans_fit
	get_trans_masks
	least_squares_deblur
	wiener_deblur

	Feedback
	Sponsor
	Acknowledgements
	Disclaimer

	Indices and tables
	Python Module Index
	Index

